
Supplementary Materials for

Hyperspectral Neural Radiance Fields
?

Gerry Chen1 , Sunil Kumar Narayanan1, Thomas Gautier Ottou1, Benjamin
Missaoui1 , Harsh Muriki1 , Cédric Pradalier2 , and Yongsheng Chen1

1 Georgia Institute of Technology, Atlanta, GA, USA
2 Georgia Tech Europe, Metz, France

{gerry,cedric.pradalier}@gatech.edu

yongsheng.chen@ce.gatech.edu

Qualitative Results Website

Please also refer to https://hyperspectral-nerf.github.io/supplemental-
results-webpage for qualitative results.

1 Introduction

In this work, we demonstrated that Neural Radiance Fields (NeRFs) can be
naturally extended to hyperspectral data and are a well-suited tool for hyper-
spectral 3D reconstruction. The implementation details provided in this supple-
mental document describe our simple approach to hyperspectral NeRF, but we
anticipate future works by the community will improve upon our baseline imple-
mentation using our to-be-published dataset, future larger datasets, additional
architecture and hyperparameter tuning, and recent advances in NeRFs.

Our full code will be made publicly available for the camera ready version.

2 Implementation Details

We build upon nerfstudio’s nerfacto implementation, from commit ef9e00e. Our
code will be made publicly available for the camera ready paper. The original
nerfacto pipeline and field are shown in Figs. 1 and 2 respectively.

As briefly summarized in the main paper, we make relatively minimal modifi-
cations to the pipeline and field. Using the notation from Section 5.4: Ablations,
C1 only changes the rightmost MLP in Fig. 2 to output 128 channels in the
last layer instead of 3; C2 changes the positional hash encoding (� in Fig. 2)
to take 4 inputs instead of 3 (appending �) and changes the rightmost MLP to
only have 1 output for c instead of (r, g, b); and C is shown in Fig. 2 (bottom)
of the main paper. For C, the sinusoidal encoding for � is taken to have 8 terms
? This work was supported by the National Science Foundation (Award No. 2008302 and Award No.

ECCS-2025462); U.S. Department of Agriculture (Award No. 2018-68011-28371); National Science
Foundation (Award No. 2112533 and Award No. 1936928); and National Science Foundation-U.S.
Department of Agriculture (Award No. 2020-67021-31526)

ar
X

iv
:s

ub
m

it/
54

83
30

3
 [c

s.C
V

]
21

 M
ar

 2
02

4

2 G. Chen et al.

Fig. 1: The original nerfacto pipeline (from nerfstudio docs) contains a proposal sam-
pler, which is analagous to the “coarse” field from the original NeRF paper [2], and a
“Nerfacto Field”, which is analagous to the primary network from the original NeRF
paper (F⇥).

Fig. 2: The original nerfacto field (from nerfstudio docs) is very similar to the original
NeRF paper [2], but includes appearance embeddings [1] and uses slightly different
encodings for the position and direction. This figure is reproduced in Fig. 2 of our
main paper.

(tested 2, 4, 8, 16 terms, with 8 performing marginally better than 4 and 16,
and 2 significantly worse). Also for C, the component C(�;⇥C) MLP from Fig.
2 of the main paper was taken to be identical to the rightmost MLP in Fig. 2
except with the appropriate additional number of inputs to accommodate con-
catenating the sinusoidally encoded wavelength, and with only 1 output for c

instead of 3 for (r, g, b). The latent vector ⇥C was taken to be the same size as
in the nerfacto implementation (15-dim), with increasing the size to 32 and 64
showing negligible performance improvement but increased training instability.

Similarly, �0 is the stock nerfacto field (scalar); �1 only changes the left MLP
in Fig. 2 to have 128 outputs; �2 changes the positional hash encoding to take 4
inputs, and � is as shown in Fig. 2 (bottom) of the main paper. The additional
component �(�;⇥C) MLP has 3 layers with 64-dim hidden layers and ReLU
activations. The sinusoidally encoded � is shared with C and the latent ⇥�

vector is shared with (identical to) the ⇥C vector.
Finally, P0 is the stock nerfacto proposal network while P� augments the

proposal network with the wavelength. For P�, the position is first run through
a hash encoding and MLP as in P0, except the MLP outputs a latent vector of
dimension 7 instead of a scalar density. This latent vector is concatenated with a

Supplementary Materials for Hyperspectral Neural Radiance Fields 3

2-term sinusoidally encoded wavelength and fed through a 2-layer network with
7-dim hidden layer to output a scalar density for inverse transform ray sampling.
Like the original nerfacto pipeline, this sampling step occurs twice with identical
architecture (but different weights) proposal networks.

Reiterating our implementation, our primary HS-NeRF implementation uses
C(�;⇥C), �0(�;⇥�), and P0, which we find to produce good results while also
enabling wavelength interpolation.

2.1 RGB Implementations

Pseudo-RGB wavelengths. For the purposes of generating pseudo-RGB images,
on the Surface Optics datasets we use the wavelengths 622nm, 555nm, and 503nm
for R, G, and B channels respectively.

For the BaySpec datasets, we use a slightly more involved approach. We
found that the BaySpec datasets were more sensitive to noise saturation and
white balance, so we use an approach similar to that described in Section 6.2
of the main paper to generate pseudo-RGB images. Specifically, we first man-
ually identify 5-10 point correspondences between a hyperspectral image and
an iPhone photo of the same scene to represent pairs of colors that should be
the same. Expressing the n points in the hyperspectral image as X 2 R128⇥n

and in the iPhone photo as Y 2 R3⇥n, we solve for a linear transformation
A 2 R3⇥128 = argminA0 kY �A

0
Xk2 using the least squares solution. We then

use this transformation to convert the hyperspectral image to pseudo-RGB. Af-
ter using this initial approach to boot-strap certain components of the pipeline,
we later apply the method described in Section 6.2 to generate pseudo-RGB
renderings.

HS-NeRF RGB variation implementations. For the purposes of making a quan-
titative comparison to standard RGB NeRF, Section 5.2 and Table 1 of the main
paper present variations of our approach applied to just 3-channel (RGB) images
instead of the full 128-channel hyperspectral data. As described in the caption
of Table 1, “Ours-Cont” refers to our HS-NeRF implementation but trained on
only 3 wavelengths (so we maintain a continuous representation for radiance
spectra, but have very weak supervision of only 3 channels), “Ours-RGB” refers
to C1,�1, P0 with 3 output channels for both C1 and �1, and “Ours-Hyper”
refers to our HS-NeRF implementation trained on all 128 wavelengths. In the
table for Ours-Hyper, PSNR and SSIM are evaluated over all 128 wavelengths
while LPIPS is evaluated on the RGB images obtained using the Pseudo-RGB
procedure.

3 Training Details

All networks were trained for 25000 steps, with 4096 train rays per step using the
Adam optimizer. The proposal networks and field both used lr=1e-2, eps=1e-15,

4 G. Chen et al.

and an exponential decay lr schedule to 1e-4 after 20000 steps. Camera extrin-
sic and intrinsic optimization were both turned off, since evaluation metrics are
skewed if camera parameters are modified. To accommodate imperfect camera
poses, after COLMAP, stock nerfacto was run on Pseudo-RGB images for 100000
steps with camera optimization turned on and the resulting camera pose correc-
tions were saved and used in subsequent tests. The Surface Optics datasets took
roughly 20 minutes to train HS-NeRF while the BaySpec datasets took roughly
40 minutes to train on an RTX 3090 due to the need to re-cache a new set of 32
images every 50 steps (see next paragraph). Most architectures required similar
training times, with the exception of the last two rows of the ablation: C2�2P0

and C�P� took at roughly three times as long.
For the Surface Optics datasets, of the 48 images per image set, 43 were used

for training and 5 withheld for evaluation. Each step, the 4096 training rays were
sampled randomly from all 43 training images, except for row 6 of the ablations
where the training rays were sampled from only 10 of the 43 training images
each step, with the choice of 10 images being re-sampled every 50 steps. The
BaySpec datasets were too large to fit in VRAM so rays were sampled from 32
images every step, with the set of 32 images being re-sampled every 50 steps,
with row 6 of the ablations being reduced to 12 images resampled every 50 steps.

In some approaches, not all wavelengths could be run for every step due to
VRAM limits so a subset of wavelengths were sampled (randomly) for each step,
but every sampled wavelength was run for every ray in the step. For rows 1 and
2 of the ablations, every wavelength could be run every step. For rows 3, 4 (HS-
NeRF, ours), and 5, the number of wavelengths sampled per step were 8, 12,
and 6, respectively.

For evaluation, every wavelength of every pixel of the 5 (Surface Optics) or
35 (BaySpec) evaluation images were evaluated and compared for each scene.

3.1 Commentary on the Tools Scene

The Tools scene experienced instabilities during training with several approaches
including both HS-NeRF (ours) and nerfacto (RGB baseline). We anticipate that
obtaining better camera intrinsics and extrinsics may correct this issue, since
(a) every method had difficulty on this scene and (b) enabling camera pose op-
timization during NeRF training improved convergence for all methods. Better
camera intrinsics could be obtained by initializing COLMAP with the intrin-
sics obtained from other scenes, and better camera extrinsics could be obtained
through a combination of tuning COLMAP parameters, utilizing turntable pri-
ors, and a longer NeRF-based camera pose refinement as described in 3. The
poor convergence on the Tools scene for all methods is illustrated in both Fig. 3
(green curves) and Fig. 4.

3.2 Loss Curves

To demonstrate that all methods were fairly trained until convergence, the loss
curves corresponding to some metrics given in the main paper are shown. As

Supplementary Materials for Hyperspectral Neural Radiance Fields 5

0 5000 10000 15000 20000 25000
Steps

10�3

10�2

10�1

100

Tr
ai

n
Lo

ss

nerfacto

Rosemary
Basil
Tools
Origami

0 5000 10000 15000 20000 25000
Steps

Tr
ai

n
Lo

ss

Ours-Cont

Rosemary
Basil
Tools
Origami

0 5000 10000 15000 20000 25000
Steps

Tr
ai

n
Lo

ss

Ours-RGB

Rosemary
Basil
Tools
Origami

0 5000 10000 15000 20000 25000
Steps

Tr
ai

n
Lo

ss

Ours-Hyper

Rosemary
Basil
Tools
Origami

Loss Curves for Pseudo-RGB NeRF

Fig. 3: Loss curves for RGB NeRF correspond to the metrics from Table 1 in the
main paper. Most scenes have converged by 25000 steps except the Tools scene which
appears to have difficulty converging for all methods except “Ours-Cont”

0 10000 20000
Steps

10�3

10�2

10�1

100

Tr
ai

n
Lo

ss

Rosemary Scene

CCC1 s0 P0

CCC1 s1 P0

CCC2 s2 P0

CCC s P0 (ours)
CCC s Pl

0 10000 20000
Steps

Tr
ai

n
Lo

ss

Basil Scene

CCC1 s0 P0

CCC1 s1 P0

CCC2 s2 P0

CCC s P0 (ours)
CCC s Pl

0 10000 20000
Steps

Tr
ai

n
Lo

ss

Tools Scene

CCC1 s0 P0

CCC1 s1 P0

CCC2 s2 P0

CCC s P0 (ours)
CCC s Pl

Loss Curves for Different Network Architectures (Ablations)

Fig. 4: Loss curves for ablation testing (analagous to Table 3 in the main paper)
shows that while the rosemary and basil scenes optimize well, the tools scene does not
converge particularly well for any method, re-emphasizing the suspected pre-processing
(COLMAP) inaccuracy.

0 5000 10000 15000 20000 25000
Steps

10�3

10�2

10�1

100

Tr
ai

n
Lo

ss

Convergence when Withholding Wavelengths
(Basil Scene)

Wavelengths
in Train Set

128
64
32
16

Fig. 5: Loss curves for HS-NeRF trained with a subset of wavelengths (analogous
to Table 2 in the main paper) shows that even training with only 1 out of every 8
wavelengths still has almost identical convergence rate w.r.t. number of steps.

6 G. Chen et al.

mentioned, the Tools scene appears to have difficulty converging for all methods
including baseline nerfacto, suggesting possible pre-processing (COLMAP) in-
accuracy. This is evident both in the green curves of Fig. 3 and in the rightmost
plot of Fig. 4. Evidencing the hyperspectral super-resolution (spectral interpo-
lation) application, Fig. 5 shows almost identical training loss for all subsets of
wavelengths trained with.

4 Qualitative Example Results

A selection of example images and videos with brief explanations are provided at
https://hyperspectral-nerf.github.io/supplemental-results-webpage
to better gauge our results qualitatively.

References

1. Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron,
Alexey Dosovitskiy, and Daniel Duckworth. NeRF in the Wild: Neural Radiance
Fields for Unconstrained Photo Collections. In CVPR, 2021. 2

2. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for
view synthesis. In ECCV, 2020. 2

